
advanced
ve r s i on
c o n t r o l
POCKET GUIDE

FOR GAME DEVELOPERS

Al l you need t o know abou t
b r anch ing , merg ing and DVCS



introduction0

Version control plays a key role in game development, and it is
especially relevant for agile teams.

It is the cornerstone for best practices such us continuous
integration, continuous delivery and DevOps, and massive art
collaboration.

Only when using version control can teams implement the
"collective code ownership" and enforce the concept of being
"always ready to ship".

There is one feature that makes all modern version control
systems (Git, Mercurial, and Plastic SCM) stand out from the
previous generations – they excel on branching and merging, but
in addition: Game Development requires managing vast amount
of assets and art collaboration too.

The goal of this guide is to be a powerful tool for the expert
developer by explaining the key concepts to master the most
relevant merging techniques. Mastering branching and merging is
the way to master version control.

Plastic Gluon, the workflow and user interface made for artists and
designers, to manage art assets is also introduced.

Finally, references of studios worldwide using Plastic are
presented.

Plastic SCM Team – Boecillo Tech Park
www.plasticscm.com/company/team



2-way merge1

Find out more:
www.plasticscm.com/book/#_2_way_vs_3_way_merge

Many "arcane" version control systems are only capable of running 2-
way merges (SVN, CVS). That’s the reason why most developers fear
merging.

All merges aremanual in a 2-way merge and that's why they're
slow, boring and error-prone.

Consider the following scenario shown in the picture below: “Did I
add the line 70? Or did you delete it?”

There is no way to figure this out!
And this will happen for every single change if you merge using a 2-
way merge tool. It is boring for a few files, painful for a few hundreds
and simply not doable for thousands.

Print(“bye”);

Y
Yours Mine

Print(“bye”);

M

30 30

for i = 1 to 20 for i = 1 to 2051 51

Print(result);70 70



Find out more:
www.plasticscm.com/book/#_3_way_merge

3-way merge2

All modern version control systems (Git, Hg, Plastic SCM) feature
improved merge tracking and enable 3-way merging.

3-way merge not only compares "your copy to mine". It also uses
the "base" (a.k.a. common ancestor) to find out "how the code
was before our changes".

This changes everything! Now 99% of merges will be
automatic–no manual intervention required.

When you compare to the “base”, conflicts are solved this way:
• Line 30 – automatic – it will just keep mine (I changed the line).
• Line 70 – automatic – the line was deleted on "source".
• Line 51 – manual – the user has to decide how to write the “for
loop”. Is it from 1 to 15? 1 to 20? 1 to 25? Or maybe write
something else?

Yours (Source) Mine (Destination)Base

Print(“bye”);

Y

30

for i = 1 to 1551

70

Print(“bye”);

B

30

for i = 1 to 2051

Print(result);70

Print(“hello”);

M

30

for i = 1 to 2551

Print(result);70

15 20 25



merge contributors3

When you merge between two branches, you always deal with the
merge contributors:

• The developer needs to merge 17 and 18 and the result of the
merge will be placed on branch release-52.

• The version control calculates the "common ancestor" of 17 and
18. In our scenario, the common ancestor, or base, is the
changeset 11.

• The version control will launch the 3-way merge tool for each file in
the conflict. The conflicts will be found comparing 17 and 18 to 11.

Once the merge is done, the version control will create a "merge
link" (the green arrow between 17 and "result") that will be used
to calculate the common ancestor in upcoming merges.

-

source
theirs

yours



merge tool layout patterns4

Almost all merge tools (Araxis, Xmerge, BeyondCompare, KDiff3)
use one of the following patterns to handle the merge
contributors:

• They can use a "4 panel" layout as follows:

• Or, they can use a "3 panel" layout displaying "yours" and "result"
together:

Once you understand this, merge tools won't seem so secretive to you!

Yours (Source) Mine (Destination)Base

S B D

R

Yours (Source) Destination/ResultBase

S B D



cherry pick5

How can we apply the fix of changeset 16 to the 3.0 branch?

We can’t just merge 16 to 17 because then we’d apply all changes
before 16 in branch 5.0 to 3.0. This would basically turn 3.0 into
5.0, which is definitely not what we want.

We just want to apply the "patch" of 16; the changes made on 16
to the 3.0 branch.

This operation is known as "Cherry Pick".



Integration with Unity:

Native Linux and Mac GUIs:

Native GUIs



branch cherry pick6

This is just a slightly modified "cherry pick" that allows you to
apply a "branch level patch"; it will get the changes made on the
branch, but also won't take the parent changes.

The merge in the figure above considers the (4,8] interval;
changesets 5, 7 and 8 will be 'cherry picked', but not 2 and 4 as
would happen with a regular merge.



interval merge7

This is yet another way to run a cherry pick. This time the
developer selects the beginning and end of the merge interval.
This way he chooses exactly what needs to be picked to merge.

The scenario in the figure will get the changes inside the interval
(4,8], which means only 5, 7 and 8 will be applied.



THE CLOUD VERSION CONTROL
SCALED UP FOR GAME DEVELOPMENT
Forget any limits!

...and discover

www.plasticscm.com/games/cloud

Unity &Unreal
Integration with the most popular game engines.

Syncwith Git & Perforce
Migrate your project easily.



LEARNHOWSTUDIOSWORLDWIDEUSE PLASTIC SCMLEARNHOWSTUDIOSWORLDWIDEUSE PLASTIC SCM

Find out more:
www.plasticscm.com/games/

40DEVELOPERS
(Fully distributed)

Rust - Survival game

Unity&Unreal Artists GUIGUI - Branch Expl.

HugeRepos Big files Performance

30DEVELOPERS

Openworld survival game
Subnautica PC and Xbox

Big files Branching&Merg.Huge repos

GUI - Branch Expl.

6DEVELOPERS

Games for healthcare,
education & team building

Unity Performance+28GB repos

GUI - Branch Expl. Branching&Merg.



subtractive merge8

Subtractive merge is very powerful, but you need to handle it
with care.
It is very important to understand that it is not just a "revert".
You shouldn't be using subtractives on a regular basis; it is a tool
for just special situations.

In the figure above, we need to delete the change done by
changeset 92 but keep 93, 94 and 95.

We can’t just revert to 92 since we’d lose 93, 94 and 95.

What subtractive does is the following: 96=91–92+93+94+95.

It is an extremely powerful tool to "disintegrate" tasks, but
you
really need to know what you're doing.

_

If you want to learn more about branching, merging, and Plastic SCM, take a
look at "the merge machine".

www.plasticscm.com/mergemachine



The Plastic SCM Branch Explorer rendering different types of merges and its legend:

Plastic SCM includes a feature to "explain merges" and it renders the merge contributors
visually, as you can see in the screenshot:



Learn more about the history of version control:
www.plasticscm.com/version-control-history

DVCS9

DVCS (distributed version control system) is the concept that
took the industry by storm in the last decade.

Thanks to the new breed of tools such as Git, Mercurial, and of
course Plastic SCM, version control is no longer considered a
commodity and it is now seen as a competitive advantage.

With DVCS, teams don't depend anymore on a single central
repository (and central server) since now there can be many
clones and changes are "pushed and pulled" among them. In
the case of Plastic SCM, there can be even partial clones.

Now teams working away from the head office don't have to
suffer slow connections anymore, solving one of the classic
issues in globally distributed development.

DVCS brings freedom and flexibility to the design of the
repository and the server structure.

San Francisco

developer 1

London

developer 2push / pull



D
ES
CR

IP
TI
O
N

01 The company has different studios around the world.

02 The engine studio is in New York. Different studios will push and pull to it.

The scenario shows a hierarchy of servers:04
One ‘main engine’ server in New York.

One ‘studio’ central server in London.

One of the studios, in London, has different teams that are also distributed
in different sites.

03

Developers working in centralized mode in London (direct LAN
connection to the server).
Two additional sites with additional servers. They’ll push and pull from
the London server.

One developer working from home and having a local, partial replica of
the repository (or repositories) he needs to work.

BE
N
EF
IT
S

Multiple servers that can use different underlying technology: suppose the
New York studio is a ‘Windows shop’ while the London one prefers to run
servers on Linux. Replication will work independently of the underlying
operating system and database backend.

01

Servers running with different DB backends and HW requirements:02

Replication between environments ensures proper asset and code delivery.03

The New York studio can be a big server (32Gb RAM, 16 cores) using a
SQL Server and handling the load of 400 concurrent developers.

The London studio can use a big server (16Gb, 8 cores) using MySQL and
handling the load of 100 concurrent developers.

The developer working from home can use a replicated server running
on his laptop and use a SQLite backend (really small memory footprint
and only handling single user load).

The 2 distributed sites inside the ‘UK Studio’ can use much smaller
machines to handle the load of 10 developers each.

Distributed teams and studios handled
with Plastic SCM

Game Engine “n”
Main Site

Game Engine “n”
Site 3

Game Engine “n”
Site 2

developers

developers developers

developer
working from home

local developers

Game Engine

push/pull

push/pull

NEW YORK LONDON



1

Initial situation: a branch replicated at two different
locations.

A regular merge can be run to reconcile the changes replicated from the repository at Location B

Developers at the two locations make changes on
the same branch.

Location A replicates the repository at location B,
How will the conflicts be solved?

The replicated changesets can’t be directly placed at the
end of the branch,
so they’re correctly linked to their parents.

A “subbranch” is created, like a parallel branch inside,
reflecting what actually happened.

2

4

3

5

LOCATION B - REPO B

solving distributed conflicts10

What happens when two developers work on the same branch on
different repository clones? How will they reconcile the concurrent
changes?

The figure below explains it step by step:

LOCATION A - REPO A

_0 1 2 3_ _0 1 2 3_

_0 1 2 3_0 1 2 3 4_ _0 1 2 3_0 1 2 3 5_0 1 2 3 5 6_

_0 1 2 3_0 1 2 3 4_

_0 1 2 3_0 1 2 3 4_



Plastic SCM supports both centralized and distributed
scenarios. A workspace can be directly connected to a central
server; no need for intermediate repository clones (although
you may use them). That's why Plastic SCM can work in "real"
centralized mode.

01

Plastic supports heavy load on a single server.02

03 Multiple Plastic servers can be configured to split the
repository catalog among multiple machines, if necessary.

04 Speed is also remarkably fast, consistently beating established
competitors.

BE
N
EF
IT
S

Coders and Artists in a given location can work directly
connected to the version control server, without a local clone.

01

The direct connection enables a simpler "lock-edit-checkin"
cycle which is more natural for artists and coders. Disk space
is also saved, considering in game dev projects it is measured
in GB.

02

Avoid unwanted locks, be responsive and fast, so the main
server seamlessly scales to handle from few to hundreds of
concurrent users.

03D
ES
CR

IP
TI
O
N

Plastic SCM is a DVCS but supports
working centralized

Plastic SCM is a DVCS but supports
working centralized



Plastic SCM is very visual already and the latest version adds a
new GUI + workflow specifically designed for artists in game
development: Plastic Gluon.

Plastic Gluon removes all the "coder-oriented" bits and keeps
what is relevant for an artist.
It is all about an "artist-centric" vision:

Coders and artists will use a single version control but differently
and always taking advantage of what makes them productive.

01 The artist can select which files to download (file-per-file
workflow instead of the more developer-oriented 'changeset
mode').

03 Able to checkin even if part of the workspace is out-of-sync (per
file version control).

02 Sync only what you need – saving time with huge binaries.

Plastic Gluon



Códice Software was founded back in 2005 with one goal in mind:
develop a high performance distributed version control system
for really advanced teams.

300 sprints and more than 3000 releases later, Plastic SCM helps
teams in more than 20 countries build better software. Teams in
well-known companies like Microsoft, Samsung, Delphi, Siemens,
Medtronic, HP, Mapfre, DHL, Facepunch Studios, and TellTale.
They all have something in common: they need the best branching
and merging system, high performance, high scalability and
distributed development.

Videogame studios around the world are currently switching to
Plastic SCM because it is the only DVCS able to handle huge files,
locks, simplifies artists workflow and collaboration, and combine
centralized and distributed development.

Maybe the code of your favorite videogame is already controlled
by Plastic SCM… :-)

about us11



All our work happens to be around merging source code –
Merging files, directories, finding conflicts... creating ways to
make merging simpler and more effective.

Programmers used to ask us: "Why merge tools don’t understand
the code?"

And that's why we created SemanticMerge in 2013; the first 3-
way merge tool in the market able to understand the code.

We applied all that we learned with Plastic about merging plus all
the ideas we had about how merge should be. SemanticMerge is
the first step towards semantic version control.

www.semanticmerge.com

about semanticmerge12



Boecillo Tech Park

Edificio Centro, 103

47151 Valladolid - SPAIN

@plasticscm

sales@codicesoftware.com

PlasticSCM

Main Version Control Features for GameDev

Big binary files

Distributed Repos

Centralized Repos

Artist-oriented UI &Workflow

File Exclusive Lock

On-premise and Cloud Service

Branching &Merging

Plastic SCM GitPerforce Subversion

Yes *Main Git-services: GitHub, GitLab, BitucketNo Poor/Partial

Poor

3rd party Git-services* 3rd party


